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ABSTRACT

The human language system represents both linguistic forms and meanings, but
the abstractness of the meaning representations remains debated. Here, we
searched for abstract representations of meaning in the language cortex by model-
ing neural responses to sentences using representations from vision and language
models. When we generate images corresponding to sentences and extract vision
model embeddings, we find that aggregating across multiple generated images
yields increasingly accurate predictions of language cortex responses—sometimes
rivaling large language models. Similarly, averaging embeddings across multiple
paraphrases of a sentence improves prediction accuracy compared to any single
paraphrase. Enriching paraphrases with contextual details that may be implicit
(e.g., augmenting ”I had a pancake” to include details like ”maple syrup”) further
increases prediction accuracy, even surpassing predictions based on the embed-
ding of the original sentence, suggesting that the language system maintains richer
and broader semantic representations than language models. Together, these re-
sults demonstrate the existence of highly abstract, form-independent meaning rep-
resentations within the language cortex.

1 INTRODUCTION
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Figure 1: We probe whether neural activity in the language cortex can be explained by different rep-
resentations of the original linguistic input. Starting from each original sentence, we derive and an-
alyze eight alternative representations - (A) original sentence, (B) content words capturing the main
semantic elements, (C) a header phrase summarizing a group of related sentences, (D) paraphrases
of the original sentence, (E) paraphrase of the original sentence enriched with commonsense con-
text, (F) images generated from the original sentence, (G) images generated from the content words,
and (H) images generated from the header phrase. Language-based variants (A–E) are embedded
with large language models, while visual variants (F–H) are embedded using vision models.
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In recent years, Large Language Models (LLMs) have shown remarkable potential in modeling
neural activity in the human language cortex. A central approach for studying these brain–model
correspondences has been encoding models, which predict neural responses from features of linguis-
tic stimuli. Early studies relied on corpus derived, automated and hand-constructed feature spaces
including word embeddings, phonemes, syntactic structure, or narrative properties distinctions to
construct encoding models of the language cortex Mitchell et al. (2008); Wehbe et al. (2014a); Huth
et al. (2016); De Heer et al. (2017). These works demonstrated that word-level representations could
account for meaningful variance in brain responses, but often ignored the broader sentence context
in which words are embedded. Subsequent efforts showed that incorporating context, capturing rela-
tionships between words across time leads to improved modeling of language cortex activity Wehbe
et al. (2014b); Jain & Huth (2018). Building on these findings, recent studies have turned to large
artificial neural network–based language models, demonstrating that modern LLMs optimized for
next-word prediction (e.g., GPT-style models) or trained with contextual objectives (e.g., masked
language models such as BERT) provide SOTA predictions of neural responses and reveal striking
convergence between artificial and biological language systems Toneva & Wehbe (2019); Schwartz
et al. (2019); Schrimpf et al. (2020); Goldstein et al. (2022); Toneva et al. (2022); Hosseini et al.
(2024); Tuckute et al. (2024a).

Next, researchers have sought to understand which components of language drive the similarity
between model representations and brain responses. A recent study demonstrated that semantic
meaning, rather than surface-level lexical or syntactic features, is the dominant factor underlying
brain–model alignment Kauf et al. (2024). Research all along has also consistently upheld the
importance of preserving the sentence form for activating the language cortex: original sentences
reliably yield higher responses than word-level manipulations (e.g., word lists or paraphrases), high-
lighting the role of meaningful compositional structure. However, to our knowledge, there has been
little systematic investigation of whether alternative representations (alternating either in form or
even modality) that preserve semantic content can similarly predict language cortex activity.

In this paper, we examine whether the information encoded in the human language cortex can
be modeled from diverse representational sources that differ substantially from the original
linguistic stimulus in both form and modality. We also explore the role of commonsense knowl-
edge, information that is implicit to humans but not explicitly present in the sentence in shaping
cortical representations. Our key contributions are as follows:

1. We demonstrate that embeddings from vision foundation models, applied to visual depictions
of sentences, possess non-trivial predictive power for modeling language cortex activity during
sentence comprehension. Importantly, this predictivity increases when incorporating multiple
diverse images per sentence, demonstrating that representational averaging provides a closer
approximation of the format of linguistic meaning in the brain.

2. Next, we demonstrate that foundational large language model embeddings of paraphrased sen-
tences also predict language cortex activity, with accuracy improving as more paraphrases are
used. This mirrors the visual domain findings: greater representational diversity enhances pre-
diction accuracy through averaging, indicating that the language cortex can be modeled even
when stimulus form differs substantially from the original input.

3. Finally, we show that enriching sentences with commonsense context-information evident to
humans but not explicitly present in the original text produces a substantial boost in predic-
tivity. This finding underscores the critical role of implicit background knowledge in shaping
cortical representations and suggests that effective brain-model alignment requires integrating
structured, contextually relevant knowledge beyond surface-level representations.

2 TRAINING AND DATASETS

We analyzed voxel responses from the ‘core’ language network, comprising the Inferior Frontal
Gyrus, Inferior Frontal Gyrus – Orbital part, Middle Frontal Gyrus, Anterior Temporal cortex, and
Posterior Temporal cortex across three datasets where participants read and processed sentences
during fMRI scanning: Pereira (2018) Pereira et al. (2018), Tuckute (2024) Tuckute et al. (2024b)
and Caption Scene Dataset CSD (2025) Li et al. (2025). Additional details on datasets are provided
in Appendix A.1.
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Figure 2: Comparison of performance in predicting language cortex activity between LLM embed-
dings of the original linguistic stimuli from the Pereira (2018) dataset (CLIP, MPNet, BERT-BASE,
GPT2-XL and LLAMA3 presented in grey horizontal lines) and vision model embeddings of their
corresponding visual counterparts (remaining models). Performance of the visual models increases
with the number of images, sometimes surpassing some of the language models.

We first investigate whether meaning in the language cortex is captured exclusively by language
model embeddings of the original sentence, or whether it can also be represented by alternative sen-
tences that convey the same information. We also test whether representations from other modalities,
such as vision, can capture this meaning (Figure 1). Finally, we assess whether predictive accuracy
based on the original sentence can be further improved by enriching it with commonsense contextual
information.

To evaluate predictive accuracy, we fit a ridge regression model Y ≈ EW by minimizing ∥Y −
EW ∥2F + λ∥W ∥2F , where Y denotes the voxel responses, E the embeddings from either vision
or language models, and W the regression weights (examples in Appendix Figures 10, 12, 11, 14
and 15). The parameter λ > 0 is the regularization hyperparameter, chosen via cross-validation to
prevent overfitting. More information on training can be found in Appendix Section A.2. We use
the following featurizations:

A. Original sentences: We use the original sentence {Si}Ni=1 presented to the subjects, obtain the
penultimate layer embeddings from an LLM as E = {PL(Si)}Ni=1 where PL(·) denotes the
penultimate layer embedding.

B. Content words: We extract the most concrete and semantically salient terms {cj}C
S

j=1 from
each sentence: open-class parts of speech such as nouns and main verbs carrying the core
meaning of the sentence. They are identified using a SciPy-based syntactic parser. For example,
from “The boy is eating pancakes”, we extract “boy” and “pancakes”. Each content word
is embedded separately using the penultimate layer of the LLM, then averaged to create a
sentence-level representation: E = 1

CS
ΣcjPL(cj).

C. Header words: For the Pereira (2018) dataset Pereira et al. (2018), sentences are grouped into
paragraphs sharing a common topic. We use the paragraph header H as a high-level semantic
summary. The header embedding E = PL(H) is used to predict the averaged brain responses
Y = 1

KΣK
j=1YSj

across all sentences in the paragraph, where YSj
is the brain response for

sentence Sj and K is the number of sentences in the paragraph. Note that in the Pereira (2018)
dataset’s third experiment, several paragraphs described the same topic, we therefore merged
all such paragraphs and used the shared topic as the paragraph header.
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D. Standard paraphrases: We generate R = 70 paraphrases (Appendix Table 1) for each sen-
tence using Gemini Comanici et al. (2025) (alternative phrasings that preserve the original
semantic meaning while varying in surface form). To analyze how the number of paraphrases
affects prediction accuracy, we systematically sample subsets in increments of 5 (i.e., r ∈
{5, 10, 15, ., 70}). For each subset size r, we average the embeddings E = 1

rΣ
r
i=1PL(PS

i ),
where PS

i is the ith paraphrase generated for sentence S. This incremental sampling allows us
to track how sentence-level representational diversity impacts brain prediction accuracy.

E. Enriched paraphrases: We generate R = 70 paraphrases (Appendix Table 2) that embed
broader contextual and inferential content: details that a human might naturally associate with
a sentence, even if not explicitly stated. We process these enriched paraphrases in the same
way as the standard paraphrases described in D.

F. Sentence-Generated Images: We use the stable diffusion model Rombach et al. (2022) to
generate M = 100 images for each sentence S, using the sentence itself as the prompt. While
generating textual descriptions from images is relatively well-studied, expressing the full mean-
ing of a sentence in a single image is far more challenging. Sentences often convey abstract
concepts or temporally extended events that cannot be captured in one snapshot. To mitigate
this, we create a diverse set of images per sentence, each offering a complementary visual per-
spective that together approximate the sentence’s semantics. From these images we extract
embeddings from the penultimate layer of a state-of-the-art vision model {V M(ISi )}Mi=1. We
then average a subset of m ∈ {5, 10, 15, .., 100} out of M embeddings to form a single repre-
sentation E = 1

mΣm
i=1V M(ISi ), where ISi is the ith image generated for sentence S.

G. Content-word images: For each content word {cj}C
S

j=1 in sentence S, we use the stable dif-
fusion model to generate M images. From these images we extract embeddings from the
penultimate layer of a state-of-the-art vision model {V M(I

cj
k )}Mk=1. We first average a se-

lected subset of m embeddings to obtain a single representation for each content word, and
then average across all content word representations to produce a sentence-level embedding
E = 1

CS Σcj
1
mΣm

k=1V M(I
cj
k ), where I

cj
k is the kth image generated for content word cj .

H Header images: We generated M images of the same header word, get vision model em-
beddings of them, and average a subset m of these images to get an input representation
E = 1

mΣm
i=1V M(IHi ) to predict Y = 1

KΣK
j=1YSj

as described above, where IHi is the
ith image generated for header word H .

We used a wide range of vision models spanning diverse architectures and training objectives He
et al. (2016); Liu et al. (2022; 2021); Dosovitskiy et al. (2020); Caron et al. (2021); Radford et al.
(2021), and language models spanning encoder–decoder and decoder-only architectures, with causal
and non-causal variants Song et al. (2020); Devlin et al. (2019); Radford et al. (2019); Team et al.
(2025); Dubey et al. (2024) (details are provided in Appendix Sections A.3 and A.4).

3 RESULTS

3.1 VISUAL MODELS CAPTURE MEANING IN THE LANGUAGE CORTEX

3.1.1 SENTENCE-LEVEL COMPARISON

First, we compare how vision and language models predict brain responses in the language cortex.
Using LLM embeddings of each full sentence and vision-model embeddings of their correspond-
ing generated images (A vs F), we train encoding models to predict cortical activity. With only
a single image per sentence, language-based models outperform vision-based ones, though vision
embeddings also demonstrate meaningful predictive power for language cortex activity, with some
models (such as SWIN transformers) achieving competitive performance. This pattern emerges both
in the Pereira (2018) dataset using images generated from sentence prompts (Figure 2) and in the
CSD (2025) dataset using original COCO images that correspond to the caption stimuli (Figure 3).
As we increase the number of generated images per sentence and average their embeddings, the
performance of vision models improves substantially—sometimes even surpassing certain language
models (see Pereira (2018) results in Figure 2, Tuckute (2024) results in Appendix Figures 17, and
CSD (2025) in Appendix Figure 18).
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Figure 3: Comparison of performance in pre-
dicting language cortex activity between LLM
embeddings of the original linguistic stimuli
from CSD (2025) dataset (first 5 bars) and single
image vision model embedding of their original
COCO visual counterparts (remaining bars).
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Figure 4: Performance of SWIN vision mod-
els in predicting language cortex activity using a
single image, with experiments repeated across
images sorted in order of decreasing quality (de-
fined as the cosine similarity between the sen-
tence and the image’s CLIP embeddings).

This cross-modal success demonstrates that language cortex responses can be predicted using rep-
resentations from visual content that preserves the semantic meaning. While individual images may
miss certain semantic nuances, aggregating multiple visual perspectives systematically improves
neural prediction accuracy. The robustness of this representational averaging effect, where perfor-
mance gains from multiple images occur consistently across diverse vision architectures and train-
ing objectives highlights that this is a fundamental property of how semantic content can be distilled
from varied visual exemplars, even though baseline performance levels differ across model families.

A critical nuance in our analysis is in the quality of the generated images, which is computed as the
cosine similarity between CLIP-based embeddings of each image and its corresponding sentence.
We use this similarity as a proxy for semantic alignment. Despite being generated from the same
sentence, images vary widely in how accurately they capture the intended meaning, as diffusion
models are not perfect and often produce off-topic or visually noisy samples (Appendix Figure 13).

Currently, all generated images are treated equally during the averaging process. However, only a
subset of these images truly reflect the core content of the sentence, while others may diverge sig-
nificantly. Our analysis shows that this variance directly impacts model performance: the predictive
performance of models using single image embeddings declines systematically with decreasing im-
age quality (Figure 4), demonstrating that low quality images fail to encode the critical semantic
information present in the original sentence, leading to poorer alignment with brain responses.

We tested whether sorting images by semantic quality yielded more interpretable performance tra-
jectories. When we incrementally include images in descending order of CLIP-based semantic sim-
ilarity, we observe a sharp rise in accuracy as high-quality images are added, followed by a plateau,
and eventually a decline as lower-quality images introduce noise (Figure 5). This contrasts with
random ordering, where prediction accuracy is consistently lower and continually increases with ex-
emplar averaging, confirming that image quality systematically affects neural prediction accuracy.
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Figure 5: Pereira (2018) Dataset - Comparison of vision model performance in predicting language
cortex activity using multiple images, with images ordered randomly versus in order of decreasing
quality. Averaging more images helps in the case of random ordering, consistent with averaging the
noise from non-ideal images. Adding more images eventually hurts in the case of ordered images,
where eventually, less useful images are being incorporated.
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3.1.2 CONTENT-WORD COMPARISON

Next, we tested whether the core semantic elements of sentences could predict language cortex re-
sponses when stripped of their full compositional structure. We evaluated the capacity of vision
and language models to predict language-cortex responses by focusing on content words within
each sentence—primarily nouns and main verbs that carry the essential semantic content (examples
in Appendix Figure 12). This approach reduces sentences to their key conceptual building blocks
while removing grammatical structure, function words, and compositional relationships. For each
content word, we extracted embeddings from language models, and for the corresponding generated
images produced by Stable Diffusion, we obtained visual embeddings using vision networks (featur-
ization B vs G) (Figure 6). Even with a small number of content-word-based images, vision models
achieved performance levels comparable to, and in most cases surpassing, those of certain language
models such as BERT-Base and MPNet. We also observed a consistent upward trend in accuracy
with increasing numbers of images, suggesting that aggregating multiple visual representations of
individual concepts captures semantic nuances that contribute to language cortex responses.
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Figure 6: Comparison of performance in pre-
dicting language cortex activity between LLM
embeddings of the content-word linguistic stim-
uli and SWIN model embeddings of their vi-
sual counterparts. Performance of SWIN vision
models (which are trained without language su-
pervision) increases with the number of images,
surpassing many of the language models.
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Figure 7: Comparison of performance at pre-
dicting language cortex activity between LLM
embeddings of the header word groups from the
Pereira (2018) dataset and SWIN model embed-
dings of their visual counterparts. For both lan-
guage and vision models, the performance is
worse than when looking at content-words or
the original sentence.

These experiments reveal that when we reduce sentences to their core conceptual content, vision and
language models achieve comparable predictive power for language cortex responses. The fact that
vision model embeddings of images of individual words like ‘boy’ and ‘pancakes’ can predict brain
responses nearly as well as linguistic representations is particularly striking given that these vision
models were trained purely on natural image statistics without language supervision. This suggests
that the meaning component of language cortex responses taps into conceptual representations that
can be accessed through the statistical structure of visual experience alone, indicating that semantic
processing in the language cortex may be grounded in modality-independent principles that both
linguistic and visual systems can converge upon. However, the remaining performance differences
between content words and full sentences (compare Figures 6 and 2) highlight that compositional
structure, grammatical relationships, and contextual integration also contribute meaningfully to lan-
guage cortex responses, though perhaps to a lesser degree than the core conceptual content.

3.1.3 HEADER-WORD COMPARISON

We now compare LLM embeddings of header words with vision model embeddings of correspond-
ing images to predict averaged brain responses to sentence groups sharing the same topic (C vs
H). Vision and language models achieve remarkably comparable performance levels, though both
perform substantially lower than when using original sentences or content words (Figure 7). The
averaging effect with increasing numbers of images is consistent in smaller Swin models but mod-
est, possibly because individual header words are already concrete and semantically focused enough
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that a few images capture their core meaning. This experiment represents the most abstract test of
cross-modal prediction: using single thematic words (e.g., ‘toaster’, ‘beekeeping’) to predict lan-
guage cortex responses to entire passages on those topics. The near-equivalence between vision and
language models at this level suggests that when semantic content is highly abstracted, modality dif-
ferences become minimal. However, the overall lower accuracy indicates that much of the predictive
power for language cortex responses comes from the richer semantic and compositional information
present in full sentences and individual concepts, rather than abstract thematic categories alone.

3.2 PARAPHRASES

3.2.1 COMPARING ORIGINAL SENTENCES WITH PARAPHRASES

So far, we examined the potential of cross-modal representations for modeling the language cortex.
Here, we turn to alternative representations within the same modality, comparing the modeling per-
formance of LLM embeddings of the original sentence with the mean embeddings of its paraphrases
(A vs D). In the Pereira (2018) dataset, paraphrase embeddings alone yielded reasonable prediction
accuracy. While averaging over a small number of paraphrases (≤ 5) underperformed relative to
the original sentence embeddings (Figure 8), performance improved steadily as more paraphrases
were incorporated (pink curve), at times surpassing the original sentence baseline (grey curve). This
benefit was weaker in the Tuckute (2024) dataset (Appendix Figure 21), likely for two reasons:
(i) responses in this dataset were averaged across voxels, which eliminated voxel-specific informa-
tion that may carry important signal, and (ii) Pereira (2018) paragraphs are longer, richer and more
content-diverse, making paraphrases more likely to be diverse, whereas Tuckute (2024) sentences
are simpler and more abstract, yielding paraphrases with limited variation (Appendix Tables 14, 15).
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Figure 8: Pereira (2018) dataset - Comparison of the performance in predicting language cortex
activity by LLM embeddings of the original linguistic stimuli presented to subjects with averaged
embeddings of generated paraphrases. Averaging embeddings across more paraphrases steadily
improves prediction accuracy, in some cases matching or surpassing the original sentence.

This pattern parallels our vision-based experiments, where a single image was less predictive than
the original sentence but prediction accuracy improved as multiple visual samples were averaged. As
in the vision case, alternative modalities or representational forms show greater potential for mod-
eling the language cortex when the original stimuli presented to subjects are information-rich and
concrete. Similarly, when we sort the paraphrases based on their semantic similarity to the original
sentence (measured using the cosine similarity in the CLIP language encoder space) and incremen-
tally add them in descending order of similarity (Appendix Figures 22 and 23), we observe a similar
trend: accuracy improves rapidly at first and then saturates (green plot). This suggests diminishing
returns as lower quality or less semantically similar paraphrases are added, highlighting that not all
paraphrases contribute equally, and the quality of information matters as much as quantity.

Averaging paraphrase embeddings narrows, but typically does not erase the gap to the original sen-
tence; it exceeds the original mainly with stronger LLMs (Gemma3) and for semantically rich stim-
uli (e.g., Pereira (2018)). This pattern suggests two components in the language cortex signal: (i) a
content-dominant component recoverable from many surface realizations, and (ii) a form-sensitive
residual captured best by the original sentence.

We also tested whether paraphrases add complementary information to the original by concatenat-
ing the original embedding with the paraphrase average (orange curve in Appendix Figs. 24, 25).
In Pereira (2018), concatenation surpasses the original, indicating that paraphrases contribute ad-
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ditional, brain-relevant content beyond surface form. In Tuckute (2024), concatenation improves
over paraphrases alone but does not surpass the original, consistent with paraphrases adding little
new information for short/abstract stimuli. These findings suggest that paraphrase-based represen-
tations contribute most when they introduce substantive semantic variation, whereas in the absence
of such variation the precise linguistic form of the original sentence remains the strongest predictor
of language-cortex responses.

3.2.2 COMPARING ORIGINAL SENTENCES WITH COMMONSENSE-ENRICHED PARAPHRASES
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Figure 9: Pereira (2018) Dataset - Comparison of LLM embeddings of the original linguistic stimuli
presented to subjects with averaged embeddings of generated paraphrases with additional context.
Averaging embeddings of paraphrases enriched with contextual information yields higher prediction
accuracy than the original sentence embeddings.

Our earlier experiments hinted at a key idea: adding supplemental information to a sentence, beyond
its original form can often enhance our ability to model brain responses. In the above analyses, we
preserved the original sentence embedding and concatenated it with embeddings from paraphrases.
However, those paraphrases were semantically near-identical to the original sentence, merely differ-
ing in surface structure. As a result, the added information was limited, more a stylistic variation
than a substantive expansion of meaning.

This led us to ask a deeper question: can paraphrases enriched with new commonsense context,
while still preserving the core semantics of the original sentence further improve brain predictivity
(featurization A vs E)? In this next set of experiments (illustrated in Figure 9, Appendix figure
19), we intentionally moved beyond superficial rewording and generated paraphrases that embedded
broader contextual and inferential content: details that a human might naturally associate with the
sentence, even if not explicitly stated. These enriched paraphrases preserve the original intent, but
vary more significantly in both form and informational density. More broadly, we were interested in
whether adding such rich context could compensate for or even outweigh the importance of original
form or modality when modeling responses in the language cortex (Appendix Table 14).

We found that the effectiveness of this approach depended strongly on the nature of the dataset. In
the Pereira (2018) dataset, whose sentences are typically rich, concrete, and highly visualizable, it
was relatively easy to generate extended paraphrases with coherent, plausible context. In these cases,
even a small number of enriched paraphrases substantially outperformed the original sentences in
modeling brain activity (pink curve in Figure 9), and performance continued to improve without
plateauing. This suggests that additional meaningful information, particularly information the brain
may implicitly infer can have a strong additive effect on neural predictivity. We next asked whether
combining the original sentence with these enriched paraphrases could further improve model per-
formance, reasoning that the specific linguistic form of the original sentence might add information
beyond paraphrased content (Appendix Figure 27). When we concatenated the original sentence
embedding with the averaged paraphrase embedding, we did not see as major an improvement as
we had seen when we used paraphrases without additional context. For older or less powerful mod-
els, such as GPT-2 XL, concatenation yielded a modest boost relative to paraphrases alone, likely
because these models benefit from the precise structure of the original sentence combined with the
additional semantic variation from the paraphrases. However, for more powerful LLMs, such as
Llama 3 and Gemma 3, the improvement was negligible, and in some cases the paraphrases alone
performed slightly better than the concatenated representation. These stronger models already en-
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code rich, contextually robust representations of the original sentence, so the explicit addition of the
original embedding contributes little new information.

By contrast, for the Tuckute (2024) dataset this strategy was less effective. These sentences are
short (6 words long) and some of them abstract, making it difficult to generate paraphrases that
are both semantically coherent and genuinely informative. Many paraphrases introduced noise or
drifted from the original meaning (Appendix Table 15), so the enriched paraphrases alone failed to
outperform the original sentences (Appendix Figure 26). In this setting, the exact linguistic form of
the stimulus carried more predictive power than additional semantic content. As a result, appending
the original sentence by concatenation led to performance gains, although it does not always beat
the prediction accuracy when the embedding of the original sentence is used. (Appendix Figure 28).

These results suggest that predictive accuracy in the language cortex is shaped strongly by the in-
formativeness of semantic content. When added information is meaningful and consistent with the
brain’s associative priors, it enhances predictivity. Thus, enriching inputs with inferential context
can provide substantial gains beyond what is available from the original linguistic form alone.

4 DISCUSSION

In this work, we investigated whether the human language cortex can be modeled by stimuli that
differ from the original linguistic input in modality or form while preserving semantic content. Our
central aim was to examine the limits of representational flexibility, that is, the extent to which neural
responses to linguistic stimuli can be accurately predicted using representations derived from alter-
native inputs that vary dramatically in surface form (paraphrases), modality (visual vs. linguistic),
and information density (enriched vs. original content).

These analyses provide converging evidence that the human language cortex maintains highly ab-
stract, form-independent representations of semantic meaning. This conclusion emerges from three
key observations: vision model embeddings can predict language cortex responses when aggregated
across multiple images, paraphrase embeddings show similar predictive power when averaged, and
semantically enriched paraphrases can exceed the predictive accuracy of original sentences.

The success of cross-modal prediction using visual representations to model language cortex re-
sponses is particularly striking given that the language cortex was not exposed to any visual input
during the original experiments. This suggests that meaning in the language cortex is encoded in
a format that transcends specific sensory modalities. Further, the effectiveness of representational
averaging across examples sharing semantic content: whether multiple images or paraphrases sug-
gests that this process amplifies shared meaning while reducing noise from surface-level variations.
This finding demonstrates that the meaning component of language cortex responses can be captured
even when input content is embedded in highly variable surface forms or accessed through entirely
different sensory modalities. Additionally, the finding that enriched paraphrases can exceed original
sentence predictions suggests that the language cortex constructs enriched semantic representations
that extend far beyond the information literally present in the text, incorporating the contextual as-
sociations and commonsense inferences that humans naturally bring to comprehension. This finding
suggests a core difference in the breadth of semantic associations that brains and language models
maintain, with the brain capturing richer and more encompassing representations, perhaps due to
the broader range of real-world tasks it learns to perform that go beyond next word prediction.

Several limitations should be acknowledged. First, our visual generation relied on current diffusion
models, which may not optimally capture the visual content most relevant to language processing.
Future work could explore whether more sophisticated multimodal models or human-generated im-
ages yield different patterns. Second, our commonsense enrichment was generated algorithmically
and may not reflect the specific knowledge integration processes that occur during natural reading
or listening, where representations evolve on a word-by-word basis. Lastly, the fMRI datasets used
in this study have inherently slow temporal resolution, providing only coarse snapshots of neural ac-
tivity averaged over several seconds rather than millisecond-level dynamics. The dataset-dependent
effects we observed highlight the need for more diverse neuroimaging corpora that span the full
range of linguistic content, from concrete to abstract.

Despite these limitations, our work demonstrates how powerful generative models can be leveraged
to create alternative input types that preserve semantic content while varying in modality (visual vs.
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linguistic) and surface form (paraphrases), enabling cross-modal and cross-form neural prediction.
Through averaging model representations of multiple generated variants, we can isolate the shared
meaning components that drive neural responses. This methodological approach opens new av-
enues for understanding how intelligent systems, both biological and artificial, extract and represent
meaning from experience that can be captured across diverse sensory modalities and surface forms.
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A APPENDIX

A.1 DATASETS

The following datasets were used in our study:

1. Pereira et al. (2018), who recorded brain responses from 16 native English speakers as they
silently read short, syntactically and semantically diverse passages. The study comprised
three experiments: (1) isolated words and simple phrases to probe basic lexical–semantic
representations, (2) 384 full sentences grouped into 96 short narratives on varied con-
crete topics such as professions, clothing, birds, musical instruments, natural disasters,
and crimes, and (3) an additional 243 full sentences organized into 72 narratives of similar
thematic breadth. For our analyses, we focus on the five participants who completed both
Experiments 2 and 3, using only these two experiments because they provide full-length
sentence stimuli: 627 unique sentences in total, suitable for modeling rich compositional
semantics.

2. Tuckute et al. (2024b), who recorded brain responses from five native English speakers as
they read 1,000 six-word sentences in an event-related fMRI design. The sentences were
sampled from text corpora to maximize both semantic coverage and stylistic diversity. Each
sentence was presented individually (2 s on screen, 4 s inter-stimulus interval), with runs
of 50 sentences and short fixation blocks interleaved. Participants were instructed to read
attentively and think about the meaning of each sentence, and to encourage engagement,
they were informed that a brief memory task would follow the scan. Because each stimulus
was presented to participants only once, we trained the encoding models to predict the aver-
age response across all voxels in the functionally-defined five language fROIs. This dataset
provides brain responses to a semantically and stylistically diverse set of decontextualized
sentences, well suited for modeling sentence-level representations.
Note that the sentences in this dataset are relatively abstract and simpler compared to those
in the Pereira (2018) dataset. As a result, many sentences lack clearly identifiable content
words (see Section 2). For this reason, we did not perform the content-word experiments
on this dataset.

3. Li et al. (2025) (Caption Scene Dataset) comprises fMRI data from eight participants per-
forming a semantic matching task: each participant first read a Chinese caption and then
viewed a corresponding MS-COCO image Lin et al. (2014) to decide whether the text and
image matched semantically. For our analyses, we focused on the four subjects with the
highest signal-to-noise ratios. Because the image was shown only after the caption, the
neural responses during caption reading are uncontaminated by visual input. We there-
fore analyze only these “pure language” responses from the caption-reading phase. The
full dataset contains 9,375 unique captions and 9,494 images (18,893 total stimuli). From
these, we use the 983 caption stimuli that were presented to all four selected subjects. The
accuracies reported on this dataset are noise-normalized, with noise ceiling computed fol-
lowing the NSD procedure Allen et al. (2022). In our case, given only two repetitions for
each stimulus, the noise ceiling is equivalent to split-half reliability. Note that since the
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Then I put the container of half-frozen 
ice cream into the freezer to harden.

As a painter, I learned to focus less on the 
actual scene and more on the painting itself.

Pereira 2018 Dataset

Tuckute 2024 Dataset

The weather was warm and dry. Nordmann considered it all very 
carefully.

Caption Scene Dataset 2025

This man is wearing a suit, tie, and 
glasses.

A woman wearing a red shirt is surfing 
at sea

Figure 10: Examples of sentences used, and images generated for these sentences using Stable
Diffusion

captions in the Captions Scene Dataset are written in Chinese, we do not apply our linguis-
tic modulation analyses, such as isolating content words or generating paraphrases to this
dataset.
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Bed

1. A bed is a piece of furniture used as a place to sleep 
or have sex in.

2. A bed is made of a mattress and a box spring, plus 
sheets, pillows and covers.

3. In waterbeds the mattress is filled with water, and 
in airbeds it is filled with air.

4. Another type of bed is the hammock, a fabric sling 
suspended above the ground.

Toaster

1. A toaster is a kitchen appliance for toasting bread 
using heating elements.

2. Pop-up toasters toast the bread placed in a slot and 
eject it once done.

3. Toaster ovens have a door on the side, a tray within 
and temperature control.

4. Toaster ovens allow bread to be cooked with 
toppings like garlic or cheese.

Figure 11: Examples of header words for a group of sentences in Pereira (2018) dataset, and images
generated for these header words using Stable Diffusion

Early crews were all young men, but astronauts now are much more diverse.

young menearly crews astronauts

Pereira 2018 Dataset
We love rich tourists on vacation.

loverich tourists

Tuckute 2024 Dataset

Figure 12: Examples of content words/phrases in a sentence, and images generated for these content
words/phrases using Stable Diffusion

A.2 TRAINING DETAILS

For the Pereira (2018) dataset, we trained the model using backpropagation with a combined mean
squared error and correlation loss between the true and predicted voxel responses. This is because
a few voxel measurements contained NaN values, we retained all columns and avoided discarding
affected columns. Brain responses for the remaining datasets were estimated using the closed-form
ridge solution, with λ chosen by k-fold cross-validation (k = 1 for the Tuckute (2024) dataset and
k = 10 for the CSD (2025) dataset). Test accuracy is quantified as the Pearson correlation coefficient
computed between the predicted and observed voxel responses across the held-out test set.

When training via backpropagation, we cross-validated across a grid of λ values
(0.0, 0.1, 0.01, 0.001, 0.0001). Further, for each dataset we generated multiple train–validation–test
splits (3 for Pereira (2018), and 5 for the rest) and reported the averaged results across them. For the
Pereira (2018) dataset, we designed these splits to ensure a fair evaluation, since having sentences
from the same paragraph appear in both training and test sets could allow the model to exploit
shared context Kauf et al. (2024); Feghhi et al. (2024). To assess whether the observed trends hold
independently of contextual overlap and temporal autocorrelation, we created two random splits
and one targeted variants: a split in which the test set contained only the first sentence from each of
63 paragraphs.
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Bees crawl across his bare arms and hands, but they don't sting, because they're gentle

In developed countries, blindness is more likely to be caused by genetic problems.

Figure 13: Examples of images generated for a given sentence, ranked in descending order of quality.
Image quality is measured by the cosine similarity between the CLIP embeddings of the original
sentence and the generated images.

Original Sentence Paraphrases without any additional 
context

Paraphrases with commonsense 
context

Theft is a crime and can be punishable with jail or fines. Illegally taking items is a criminal offense, resulting in 

prison or fines.

The unlawful appropriation of another's property is theft, 

a criminal offense that is subject to penalties including 

jail or financial sanctions imposed by the legal system.

Committing theft incurs punishment such as jail or a fine. The unauthorized taking of another's property, known as 

theft, is against the law and can result in penalties such as 

serving time in prison or paying monetary fines.

Taking items illegally results in legal consequences: jail or 

fines.

The unlawful appropriation of property is theft, a 

criminal offense that is subject to penalties including jail 

or financial sanctions.

Many bees have stingers and can attack if they feel 

threatened.

Bees will sting to protect their colony when threatened. The stinging apparatus of a bee is its main deterrent 

against predators or disturbance when it feels 

threatened.

Bees can deliver a sting when they are feeling threatened. The primary purpose of a bee's stinger is self-protection 

and the defense of its colony from harm.

Stinging is how bees react to feeling unsafe or attacked. Be careful around bees, especially near flowers or 

potential hive sites, as they can sting if they feel their 

space is invaded.

Figure 14: Examples of paraphrases generated for sentences in the Pereira (2018) dataset

A.3 LANGUAGE MODELS USED FOR EVALUATION

1. CLIP Language Encoder Radford et al. (2021): The text branch of CLIP, trained jointly
with its vision counterpart using a contrastive image–text objective. It produces rich
sentence-level embeddings aligned to visual concepts, enabling zero-shot cross-modal
tasks.

2. MPNET Song et al. (2020): A Transformer-based language model that combines masked
language modeling with permutation-based training, allowing it to capture bidirectional
context and sequential dependency simultaneously.

3. BERT Base Devlin et al. (2019): A bidirectional Transformer pretrained with masked
language modeling, providing contextual word and sentence embeddings.
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Original Sentence Paraphrases without any additional 
context

Paraphrases with commonsense 
context

Do any stand out in particular? Which feature has the most impact? Which features in the photograph do you find most 

remarkable or noteworthy?

What's your primary focus in this shot? What features in the scene are most distinguishable or 

visually prominent?

See anything that sparks curiosity? Does anything seem particularly sharp or in focus 

compared to the rest?

This truly was a depressing place. The band's rhythm feels reluctant. Playing live, the band exhibited a hesitant rhythm, 

possibly due to opening night jitters.

Uncertainty marks the band's rhythm. The band played with a hesitant rhythm, unsure of the 

upcoming key change.

The band's rhythm is marked by hesitation. The rhythm played by the band was hesitant, making it 

hard to tap your foot along.

Figure 15: Examples of paraphrases generated for sentences in the Tuckute (2024) dataset
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Figure 16: Performance comparison between LLM embeddings of the original linguistic stimuli
from the Tuckute (2024) dataset and vision model embeddings of their corresponding visual coun-
terparts.

4. GPT-2 XL Radford et al. (2019): An autoregressive Transformer with 1.5 B parameters,
trained to predict the next token in large-scale web text.

5. Gemma-3 Team et al. (2025): Google’s latest open-weight decoder-only Transformer with
grouped-query attention and alternating local/global layers for efficient long-context rea-
soning (up to 128K tokens). Larger variants add a SigLIP vision encoder for multimodal
inputs and support quantization for lightweight deployment.

6. LLaMA-3 Dubey et al. (2024): Meta’s third-generation decoder-only Transformer featur-
ing grouped-query attention and efficient scaling.
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Figure 17: Evaluating LLM embeddings of Tuckute (2024) sentences versus vision-model embed-
dings of their visual counterparts, using only sentences with generated images of sufficient quality
(mean CLIP score ≥ 0.25)

A.4 VISION MODELS USED FOR EVALUATION

1. ResNet family He et al. (2016) (ResNet-50, ResNet-34, ResNet-18, ResNet-101): Deep
residual networks that use skip connections to mitigate vanishing gradients, enabling very
deep convolutional architectures.

2. ConvNeXt family (ConvNeXt Small, Tiny, Base, Large) Liu et al. (2022): A modernized
CNN design that incorporates architectural ideas from Transformers, such as large kernels
and inverted bottlenecks.

3. Swin Transformers Liu et al. (2021) (Swin Small, Tiny, Base, Large): Hierarchical vision
Transformers that process images using shifted windows, providing linear computational
complexity with respect to image size.

4. Vision Transformers (ViTs) (ViT Small, Tiny, Base, Large) Dosovitskiy et al. (2020):
Pure Transformer architectures that treat images as sequences of non-overlapping patches,
capturing global context through self-attention.

5. DINO models (DINO Small, Base, ResNet-50) Caron et al. (2021): Self-supervised repre-
sentations learned via knowledge distillation, producing strong, transferable visual features
without labeled data and supporting both ViT and ResNet backbones.

6. CLIP Vision Encoder Radford et al. (2021): The visual branch of CLIP, trained with a
contrastive objective to align images and text in a shared embedding space, enabling zero-
shot recognition and robust cross-modal retrieval.

A.5 EVALUATING VISION- AND LANGUAGE-MODEL PREDICTIONS OF LANGUAGE CORTEX
ACTIVITY - TUCKUTE (2024)

Applying the same vision-versus-language modeling framework to the Tuckute (2024) dataset as
in Section 3.1.1, we do not observe the clear performance gains with increasing image counts seen
for Pereira (2018). Many vision models fail to learn meaningful mappings, as indicated by their
negative test-time correlation scores (Figure 16). This likely reflects the more abstract nature of the
Tuckute (2024) sentences, which makes generating semantically aligned visuals more challenging
(Figure 10). Nevertheless, the performance of vision-based models remains reasonably competitive,
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indicating that even abstract sentences can evoke visual representations that capture meaningful in-
formation, albeit with more noise. Importantly, this observation still aligns with our core hypothesis:
even when vision-based representations are noisier, they retain enough semantic signal to contribute
meaningfully to neural prediction.

To account for this variability, we filtered the Tuckute (2024) dataset to retain only those images
with a CLIP-based quality score above 0.25. Restricting our analysis to these higher-quality samples
allowed us to recover the expected performance trend: as the number of relevant images increases,
model accuracy improves. However, this trend is less not observed in ViT-based models (Figure
17). One possible explanation is that standard ViT architectures rely on fixed-size, non-overlapping
image patches and lack mechanisms for hierarchical feature extraction or localized inductive biases.
As a result, they may be less sensitive to fine-grained variations in image quality or spatial detail,
especially in scenarios where the semantic content is subtle or distributed across small regions of
the image.

fMRI datasets tailored for multimodal modeling, especially those that align closely with the hy-
potheses we aim to test are exceptionally rare. In particular, not all datasets contain sentences that
are as visually grounded and easily translatable into images as those in the Pereira (2018) dataset.
For example, many sentences in the Tuckute (2024) dataset are more abstract in nature, making it
substantially more difficult to generate meaningful visual representations. This challenge is evident
in the lower quality and occasionally off-topic images produced by the diffusion model, as shown in
Appendix Figure 10.

A.6 EVALUATING VISION- AND LANGUAGE-MODEL PREDICTIONS OF LANGUAGE CORTEX
ACTIVITY (CAPTION SCENE DATASET 2025)

Lastly, we compare language-model embeddings of the full original sentence with vision-model
embeddings of the corresponding visual scenes using the Caption Scene Dataset (2025), as described
in Section 3.1.1. Because participants first read captions describing MS-COCO images, we begin
by contrasting the language-model embeddings of these captions with the vision-model embeddings
of the original COCO images.

Although the language models better capture brain activity in the language cortex, the vision models
achieve performance that is only slightly lower. This reinforces our earlier finding that language
cortex prediction remains highly sensitive to the exact linguistic form, giving language models an
advantage, while the underlying semantic content can be represented nearly as well through visual
modality.

We then extend this analysis by generating multiple synthetic images for each caption with Stable
Diffusion and averaging their vision embeddings, following the procedure in Section 3.1.1. The
same pattern emerges as in the Pereira (2018) and Tuckute (2024) datasets (Figures 2 and 17):
vision-model performance improves as the number of generated samples increases, in some cases
approaching that of the language models.

A.7 THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are primarily used to identify typos and make the language more aligned with conventions of
academic writing.
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Prompt to generate paraphrases

Prompt:
f"""You are an expert image captioner. I’ll show you some existing captions for an

image, and your task is to generate 70 NEW captions that:
1. Are similar in style and detail level to the existing captions
2. Capture the same meaning but with different wording
3. Are direct, concise descriptions (around 10-15 words each)
4. Are worded differently from each existing caption and from each other

Here are the existing captions:
{insert all captions text for the image here}

Generate 10 new captions formatted exactly as:
1. [First new caption]
2. [Second new caption]
3. [Third new caption]
4. [Fourth new caption]
5. [Fifth new caption]
6. [Sixth new caption]
7. [Seventh new caption]
8. [Eighth new caption]
9. [Ninth new caption]
10. [Tenth new caption] ... """

Table 1: Prompt used for generating paraphrase using Gemini-2.5-Flash.

Prompt to generate paraphrases with extra context

Prompt:
f"""You are an expert image captioner. I’ll show you existing captions for an image,
and your task is to generate 70 NEW captions that:

1. Are similar in style but include more detail than the existing captions
2. Capture the same meaning but with different wording
3. Are worded differently from each existing caption and from each other
4. Contain additional commonsense context to the original caption

Example:
For the sentence ’The boy is eating pancakes for breakfast’, some paraphrases
with additional context would be:
1. The boy is eating pancakes with maple syrup in the morning for breakfast
2. The boy is sitting at the dining table and having pancakes for breakfast

Here are the existing captions:
{insert all captions text for the image here}

Generate 10 new captions formatted exactly as:
1. [First new caption]
2. [Second new caption]
3. [Third new caption]
4. [Fourth new caption]
5. [Fifth new caption]
6. [Sixth new caption]
7. [Seventh new caption]
8. [Eighth new caption]
9. [Ninth new caption]
10. [Tenth new caption] ... """

Table 2: Prompt used for generating paraphrases with additional commonsense context using
Gemini-2.5-Flash.
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Figure 18: Performance comparison between LLM embeddings of the original linguistic stimuli
from the CSD (2025) dataset and vision model embeddings of their corresponding visual counter-
parts.
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Figure 19: Expanded analysis of the experiments described in Section 3.2.2 across five data splits.
For each condition, we compute test-time accuracies for averaged paraphrases and compare them
with the accuracies obtained using the original single sentence. The t-statistics increase with the
number of paraphrases, further supporting the claims in Section 3.2.2.
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Figure 20: Pereira (2018) dataset - Comparison of averaged LLM embeddings of paraphrases in
random order with those arranged in sorted order of semantic similarity to the original sentence.
These paraphrases do not have added commonsense context.
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Figure 21: Tuckute (2024) dataset - Comparison of LLM embeddings of the original linguistic
stimuli presented to subjects with averaged embeddings of generated paraphrases without additional
context.
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Figure 22: Pereira (2018) dataset - Comparison of averaged LLM embeddings of paraphrases in
random order with those arranged in sorted order of semantic similarity to the original sentence.
These paraphrases do not have added commonsense context.
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Figure 23: Tuckute (2024) dataset - Comparison of averaged LLM embeddings of paraphrases in
random order with those arranged in sorted order of semantic similarity to the original sentence.
These paraphrases do not have added commonsense context.
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Figure 24: Pereira (2018) dataset - Comparison of averaged LLM embeddings of paraphrases alone
with those that are concatenated with the original sentence. These paraphrases do not have added
commonsense context.
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Figure 25: Tuckute (2024) dataset - Comparison of averaged LLM embeddings of paraphrases alone
with those that are concatenated with the original sentence. These paraphrases do not have added
commonsense context.
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Figure 26: Tuckute (2024) dataset - Comparison of LLM embeddings of the original linguistic
stimuli presented to subjects with averaged embeddings of generated paraphrases with additional
context.
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Figure 27: Pereira (2018) dataset - Comparison of averaged LLM embeddings of paraphrases alone
with those that are concatenated with the original sentence. These paraphrases have added common-
sense context.
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Figure 28: Tuckute (2024) dataset - Comparison of averaged LLM embeddings of paraphrases alone
with those that are concatenated with the original sentence. These paraphrases have added common-
sense context.
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