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ABSTRACT

Large vision models differ widely in architecture and training paradigm, yet we
lack principled methods to determine which aspects of their representations are
shared across families and which reflect distinctive computational strategies. We
leverage a suite of representational similarity metrics, each capturing a different
facet—geometry, unit tuning, or linear decodability—and assess family separa-
bility using multiple complementary measures. Metrics preserving geometry or
tuning (e.g., RSA, Soft Matching) yield strong family discrimination, whereas
flexible mappings such as Linear Predictivity show weaker separation. These
findings indicate that geometry and tuning carry family-specific signatures, while
linearly decodable information is more broadly shared. To integrate these com-
plementary facets, we adapt Similarity Network Fusion (SNF), a method inspired
by multi-omics integration. SNF achieves substantially sharper family separation
than any individual metric and produces robust composite signatures. Clustering
of the fused similarity matrix recovers both expected and surprising patterns: su-
pervised ResNets and ViTs form distinct clusters, yet all self-supervised models
group together across architectural boundaries. Hybrid architectures (ConvNeXt,
Swin) cluster with masked autoencoders, suggesting convergence between archi-
tectural modernization and reconstruction-based training. This biology-inspired
framework provides a principled typology of vision models, showing that emer-
gent computational strategies—shaped jointly by architecture and training objec-
tive—define representational structure beyond surface design categories.

1 INTRODUCTION

The rapid proliferation of vision models—spanning diverse architectures from CNNs to Vision
Transformers, and training paradigms from supervised to self-supervised learning—has created a
rich ecosystem of computational approaches to visual processing. Yet we lack principled methods
to understand which aspects of learned representations are universally shared across this diverse
landscape and which are specific signatures of particular model families. Do all vision models con-
verge on similar geometric organizations of their representation spaces? Is linearly accessible infor-
mation a common currency across architectures, or do different model families encode information
in fundamentally distinct ways? These questions are critical for understanding the computational
principles underlying successful vision models and for predicting how different models will behave
on novel tasks.

Current approaches to model comparison rely heavily on individual similarity met-
rics—Representational Similarity Analysis (RSA) (Kriegeskorte et al.), Centered Kernel Alignment
(CKA) (Kornblith et al., 2019), Linear Predictivity (Yamins et al., 2014), and others—each
capturing a specific facet of representational structure. However, this fragmented methodology
obscures a crucial insight: different representational facets (geometry, tuning properties, linearly
accessible information) may vary in their universality across model families. Some aspects might



reflect convergent computational solutions shared broadly across architectures, while others might
constitute distinctive signatures of specific model families. Understanding this landscape requires
not just comparing models, but systematically evaluating which representational properties are con-
served versus specialized. In this work, we introduce a framework that addresses these challenges
through two key contributions. First, we systematically evaluate how different representational
facets discriminate between model families, revealing that geometry or tuning-preserving metrics
(RSA, Soft Matching (Khosla & Williams| [2024))) strongly separate families while metrics capturing
linearly accessible information show weaker discrimination—suggesting that linearly accessible
information represents a more universal computational solution while geometric organization or
tuning of individual neurons is more family-specific. Second, inspired by multi-omics approaches
in biology where diverse molecular signatures are integrated to reveal cell types, we employ
Similarity Network Fusion (SNF) (Wang et al., 2014) to combine these complementary perspectives
into unified model signatures that provide clearer family identity than any single metric alone.

This integrated approach enables us to construct a data-driven typology of vision models—a novel
contribution that moves beyond surface-level architectural categories to reveal how models actu-
ally organize information. Our typology does not rely on a priori assumptions about which models
should group together based on architecture or training method. Instead, following empirical tradi-
tions in psychology, neuroscience, and genetics (Wang et al., 2014; |Letwin et al., 2006} Echtermeyer,
et al.| [2011; Mukamel & Ngai,2019)) where researchers identify clusters of individuals through cor-
relations across multiple behavioral or molecular indices, we discover natural groupings based on
how models process visual information. While typologies could alternatively be defined from the-
oretical perspectives emphasizing explicit model properties like architecture or training data, our
empirical approach reveals surprising patterns: all self-supervised models form a unified cluster that
transcends architectural boundaries, with self-supervised ResNets grouping more closely with self-
supervised ViTs than with their supervised architectural siblings. Similarly, hybrid architectures
(ConvNeXt, Swin) (Liu et al.} [2022}|2021) cluster with MAE models, suggesting that architectural
modernization and masked reconstruction converge on similar computational strategies despite dif-
ferent design origins.

This data-driven typology provides researchers with a reference framework for understanding where
any model instance sits within the broader landscape of vision models. Just as biological taxonomies
help scientists understand relationships between species based on genetic and phenotypic traits,
our representational typology reveals the “species” of vision models based on their computational
strategies. By developing methods to systematically integrate different facets of representation in
comparative analyses of models, we provide practical tools for navigating the expanding universe
of vision models—enabling researchers to understand model relationships, predict transfer learning
compatibility, and make informed choices about which models will exhibit similar behaviors on
novel tasks.

2 METHODS

2.1 MODEL SELECTION AND DATASET

We analyze 35 vision models across four primary categories: supervised Convolutional Neural Net-
works (CNNs), self-supervised CNNs, supervised Transformers, and self-supervised Transformers.
We treat ConvNeXt (Liu et al.|[2022) and Swin (Liu et al.}[2021) as distinct families due to their hy-
brid nature—ConvNeXt incorporates Transformer-inspired design principles within a convolutional
architecture, while Swin introduces CNN-like inductive biases into the Transformer framework. For
datasets, we use the ImageNet-1k (Deng et al.| [2009) and Ecoset (Mehrer et al., 2021)) validation
sets and the CIFAR10 (Krizhevsky, 2009) and CIFAR100 (Krizhevsky, 2009) test sets. Complete
dataset and model details are provided in Appendix [A]and B}

2.2 REPRESENTATIONAL METRICS

We evaluate widely used similarity metrics that differ in the flexibility of the mappings they per-
mit—from permutation-based alignments (soft-matching) to rigid geometric transformations (Pro-
crustes) to looser linear mappings (linear predictivity) as well as non-fitting approaches that com-
pare representational geometry directly (RSA). Consider two representations X; € RM*N: and
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Figure 1: Top left: Each representational metric defines a pairwise similarity matrix over models.
Bottom left: Each matrix is visualized as an affinity graph, with nodes representing models and
edge widths reflecting pairwise similarity strength; weak similarities below a threshold are omitted
for clarity. Right: A consensus matrix obtained via Similarity Network Fusion (SNF) highlights
relations consistently supported across metrics while leveraging complementary signals. In the fused
graph, solid edges denote agreement across all metrics, dotted edges indicate partial support; strong
but uncorroborated edges may persist with reduced weight (e.g., edge 4-5); weak AND metric-
specific connections are typically suppressed (e.g., edge 1-5).

X, € RM*N; from different models, where M denotes the number of stimuli and N;, N ; denote
the number of units. All representations are mean-centered along the sample dimension as required.

Singular Vector Canonical Correlation Analysis (Raghu et al., [2017). SVCCA first applies
singular value decomposition (SVD) to the representation matrices from two models or layers to
isolate their most informative directions: X; = U;%; V. and X, = UijVjT. Retaining the top
N/ and N, j’ singular vectors that explain 99% of the variance yields the reduced representations:

X! = Ul(.Ni )TXi and X; = U§-Nj )TXj whose dominant singular directions capture a dispropor-
tionate share of the total information. Canonical correlation analysis (CCA) (Hardoon et al., [2004)
is then applied to these reduced matrices to find linear projections A and B that maximize their
correlation: Q = maxa, B COI“Y(AX;, BX’V) subject to unit-variance constraints, providing a final
similarity score that reflects how closely the informative subspaces of the two representations align.

Projection-Weighted Canonical Correlation Analysis (Morcos et al., 2018). Compared to
SVCCA, PWCCA did not apply SVD before CCA and it re-weights the canonical directions ac-
cording to their contribution to the original representation. After CCA, we obtain canonical vectors
A and B and their corresponding correlations ¢; for i = 1,2, ...k, where & = min(N;, N;). In-
stead of giving each direction equal weight, PWCCA projects the unreduced representation X; onto
its own canonical vectors to measure how strongly each one reconstructs the data. The projection
Xiaill,
>ioXiasl,
The final PWCCA similarity is then the weighted sum of canonical correlations: X¥_; a;¢; which
emphasizes directions that explain the greatest fraction of variance in X; and down-weights noisy,
low-variance components, yielding a more faithful measure of representational similarity than the
equal-weight SVCCA score.

weight for the " canonical direction is «; = where a; is the it" column of A.

Linear Centered Kernel Alignment (Kornblith et al., 2019). Linear CKA provides a scalar
measure of how similarly two sets of representations capture the relationships among the same
XX 015
X7 Xl rIXTX; ] p
X; and X; can be assumed to be normalised. Linear CKA is invariant to orthogonal transformations
(rotations or reflections), isotropic scaling, and translations of the representations, so it captures only

the relational structure shared between the two spaces.

collection of samples. It is is defined as , where ||.|| F is the frobenius norm, and

Representational Similarity Analysis (Kriegeskorte et al.). Representational Similarity Anal-
ysis (RSA) compares the geometry of representations via their Representational Dissimilarity Ma-



trices (RDMs). For each representation, we compute pairwise dissimilarities between stimuli using
1 — Pearson correlation, yielding an M x M RDM that encodes the relational structure. Model
similarity is then quantified as the Pearson correlation between their RDMs. RSA is invariant to
orthogonal transformations and reflects how models structure their representational spaces, inde-
pendent of the specific features they encode.

Soft Matching (Khosla & Williams, 2024). Soft Matching (SoftMatch) generalizes permuta-
tion distance (Ding et al., 2021) to representations with different numbers of units by relaxing
permutations to “soft permutations.” Specifically, consider a non-negative matrix P € RN:*;
whose rows each sum to 1/N; and columns to 1/N;. The set of such matrices defines a
transportation polytope (De Loera & Kim, 2013), 7(V;,N;). The optimization problem is

. k l
dr(Xi, X;) = minper (v, v, Yo Pa 2" = 2|,
where a:l(»k) and xg.l) are the k-th and I-th columns (units) of X; and X;. The optimal transport

plan P* is found via the network simplex algorithm. When IV; = Nj, this reduces to an optimal
permutation. The final similarity score is the mean unit-wise correlation between X; and X,;P*.

Procrustes Alignment (Ding et al.,2021). Procrustes analysis finds the orthogonal transformation
that best aligns two representations while preserving geometry. For unequal dimensions, the smaller
representation is zero-padded. The optimization problem is mingeco(n) [|X; — X;R/||3, where
O(N) = {R € R¥*N : RTR = I}. The optimal transformation R* is obtained via singular
value decomposition. The similarity score is the mean unit-wise correlation between X ; and X;R*.

Linear Predictivity (Yamins et al.,2014). Linear predictivity seeks an unconstrained linear trans-
formation that best predicts one representation from another: ming, || X; — X;L||3. The optimal
mapping L* is estimated via ordinary least squares. The final similarity score is the mean unit-wise
correlation between X; and X, L*.

Average Baseline. To provide a baseline that naively uses all metrics’ information, we sym-
metrized and min-max rescaled all metrics’ result matrices and simply averaged them.

2.3 SEPARATION ABILITY METRICS

We next describe the measures used to evaluate how well representational metrics capture separa-
bility between model families. Because family separation is inherently bidirectional, we compute
directional scores in both directions and report the average as the final result.

Contrastive Ratio. The contrastive ratio quantifies the relative separation between intra-family
and inter-family similarities. We consider the similarity values between different models within the
same family and take the average of them to obtain fiyimin, and the similarities between models
from two model families and obtain the average inter-family fiperween- The ratio is then defined as
CR = (Jwithin — Mbetween )/ (Hwithin + Mbetween)- A value approaching 1 suggests strong within-family
coherence relative to cross-family similarity; a value approaching 0 suggests no difference, and a
negative value implies that inter-family similarity exceeds intra-family similarity.

D-Prime. Similarly to contrastive ratio but considering the variance, the D-Prime (d’) also quan-
tifies the separation between intra-family and inter-family similarity distributions. It is defined as
d" = (Uwithin — Mbetween)/ \/ 0.5(02, 4 + Oerween)» Where v and o2 denote the mean and variance
of the respective distributions. Higher values indicate tighter clustering within a family and greater
spread across families, reflecting stronger separability.

Silhouette Score (Rousseeuw,(1987). For each model 4, we compute the average distance a(7) to
all other models in the same family and the average distance b(4) to models in the other family. The
silhouette value is then s(¢) = (b(i) — a(i))/max{a(i), b(i)}, s(i) € [-1,1]. Values near 1 indicate
that the model is well grouped with its own family, values near 0 suggest boundary placement, and
negative values imply greater similarity to another family. The overall silhouette score is obtained
by averaging s(¢) across all models.



2.4  SIMILARITY NETWORK FUSION

Next, we sought to reconcile the results across the different evaluation metrics. As elaborated in
Section [2.3] each metric captures distinct aspects of model representations and varies in its ability
to differentiate between model families. To integrate these metrics, we adopt a unified approach
inspired by Similarity Network Fusion (Wang et al., 2014} Markello, |2020). Let n be the number
of models, and V be the set of the representational metrics. For each metric v € V, we can get
a similarity matrix S” € R"™*", where each entry S;; measures the similarity between the model
1’s representation and model j’s according to metric v, as described in Section @} Then, for each
metric v, we first convert pairwise scores into a dissimilarity matrix Q" as this equation, Q}; =

Ligj (1 — (Sy; + S3:)/2). We then build an affinity W* € RM*M with a scaled exponential kernel:
Qi)?

v i) = 1 _ei)
W (Za])*mexp< 20072

) , with J;}j _— Q (i7Ni)+Q3 (ijj)+Qij.

Here, Qv (i, N;) denotes the average dissimilarity from i to its K nearest neighbors N; under metric
v. We set the hyperparameter 1 € (0,1) to 0.5 and K to 5 following the original paper.

We view each W as a weighted graph and aim to fuse them into a single matrix that emphasizes
relationships consistently supported across metrics while suppressing spurious ones. Following the
implementation, we form a row-normalized full matrix and a KNN-sparse matrix for each metric:
W -1 W L (W W o\ T
CY = Zj Wi, WU=(C")"'W", W= 3(W"+(W?)"),

Sy =W/ Y ey, Wi ifj € Nii  else .

We then run the SNF message-passing updates with diagonal regularization, which keeps self-
affinity dominant while improving numerical stability. Initialize P(()U) =W?"Fort=0,...,T—1:

P = Ba (S (1 X PIY) SOT). Ba(X) = 1(X+XT) +al

After T iterations, we average the networks and perform a row normalization and symmetrization:
_ 1 (v) _ B _ -1 B_1(p_.pT
P—WZUGVPT’ Dii—ZjPij, P=D"'P, P=3(P+P"+I).

Lastly, to form a dendrogram for model typology, we cluster the fused affinity P with hierarchical
clustering using SciPy’s linkage function (Virtanen et al., [2020).

3 RESULTS

3.1 DIVERGENT VERSUS CONVERGENT DIMENSIONS ACROSS MODEL FAMILIES

To understand which aspects of learned representations are universally shared across vision models
and which constitute family-specific signatures, we systematically evaluate multiple representational
facets. Each metric captures a distinct dimension of representational structure, allowing us to iden-
tify where model families converge versus diverge. To assess family discriminability, we quantified
the difference between within-family and across-family representational similarities using the sep-
arability measures introduced above. The results presented here are based on ImageNet; consistent
patterns were also observed on other datasets (Appendix [C)). Our systematic evaluation reveals that
different representational dimensions show markedly different patterns of convergence versus diver-
gence across model families (Figures 2] [3). This variation suggests that while some computational
strategies are universally adopted across architectures and training paradigms, others constitute dis-
tinctive signatures of specific model families.

Metrics that preserve representational geometry or unit-level tuning properties demonstrate the
strongest ability to discriminate between model families. RSA, which captures representational ge-
ometry, achieves the highest separability with a d’ of 3.95 and silhouette coefficient of 0.56—indicat-
ing that geometric organization or relational structure—how models arrange points in representation
space—constitutes a strong family-specific signature. Linear CKA also shows strong discrimination
(d’ = 3.91), which aligns with recent theoretical work showing that centered RSA and linear CKA



are mathematically equivalent when appropriate centering is applied (Williams,, 2024). Similarly,
SoftMatch, which preserves individual unit tuning while mapping two representations, shows robust
discrimination (d’ = 3.59, silhouette = 0.29). Even supervised and unsupervised variants within the
same architecture family (particularly CNNs) are reliably separated by these metrics, demonstrating
that training paradigm fundamentally shapes the geometry and tunings of individual neurons, such
that metrics diagnostic of these representational facets achieve good separation. These properties
thus constitute the unique representational “fingerprints” of model families.

Interestingly, Procrustes alignment—which allows orthogonal transformations—shows intermedi-
ate discrimination (d’ = 3.03), falling between SoftMatch and Linear Predictivity. This reveals a
clear pattern among mapping-based metrics: discriminability decreases monotonically as the trans-
formations become more flexible (SoftMatch > Procrustes > Linear Predictivity). The constraints
imposed by less flexible mappings appear to preserve family-specific signatures that are lost when
arbitrary linear transformations are allowed.

ONN (sup.)
ONN (unsup.
ConeNext (sup.)

D-prime
Swin (sup.)

CNN (sup.)

ONN (unsup.)

Figure 2: Model-family separability on ImageNet under d’, silhouette score, and contrastive ratio.
Columns correspond to nine similarity metrics, including two fusion-based methods (SNF, average)
and seven commonly-used representational metrics. Fusion-based metrics consistently yield higher
scores, highlighting their effectiveness in capturing family-level distinctions.

In contrast, metrics capturing linearly accessible information show substantially weaker discrim-
ination between families. Linear Predictivity demonstrates the lowest separability among direct
mapping-based metrics (d’ = 2.02, silhouette = 0.13), while CCA-based metrics (PWCCA: d’' =
1.55; SVCCA: d’ = 1.02) show even weaker family separation. The weak discrimination of CCA-
based metrics is particularly revealing. CCA identifies maximally correlated linear projections be-
tween representations, finding shared subspaces that are invariant to invertible linear transforma-
tions. CCA loads on the linear-accessibility facet: it detects shared linearly decodable subspaces
but, unlike RSA/CKA or Procrustes/SoftMatch, it does not constrain or preserve representational
geometry or tuning. The invariance of CCA to linear transformations, which makes it powerful for
finding shared structure across superficially dissimilar representations, also makes it insensitive to
the geometric and topological features that distinguish model families.

The theoretical relationships among these metrics help explain the discrimination hierarchy. RSA
and Linear CKA are mathematically equivalent under appropriate centering (Williams| [2024) and
both preserve the geometric structure of representations—they compare how similarly models orga-
nize their representation spaces without fitting any transformation. In contrast, the mapping-based
metrics show decreasing discrimination as they allow increasingly flexible transformations: Soft-
Match permits only permutations that preserve individual unit correspondences, Procrustes allows
orthogonal transformations (rotations and reflections), while CCA searches for optimal linear pro-
jections that maximize correlation. Linear Predictivity provides the most flexibility, allowing any
linear transformation that minimizes prediction error.

The weak discrimination of metrics that assess linearly accessible information suggests that this
aspect of representation is more consistent across model families than geometric organization.
Whether this reflects convergent computational strategies, methodological limitations of these met-
rics, or task-imposed constraints remains an open question.



3.2 INTEGRATION ACHIEVES SUPERIOR MODEL FAMILY DISCRIMINATION
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Figure 3: Mean model-family separability across four datasets, evaluated using d’, silhouette score,
and contrastive ratio. Fusion-based metrics (SNF, Average) outperform individual similarity metrics
across all datasets, with SNF yielding the most consistent and robust separation. Scores are shown
in their native scales and are not directly comparable across measures.

Critically, our SNF approach, which integrates information across all representational dimensions,
achieves dramatically superior family separation compared to any single metric. SNF attains a d’
of 11.84—nearly three times higher than the best-performing single measure—and consistently out-
performs all baselines across separation criteria. Importantly, as shown in Figure 2] SNF maintains
high and balanced discrimination across nearly all family pairs. By contrast, individual metrics often
exhibit uneven performance, separating some families while failing or for others.

Averaging similarities across metrics does not resolve this limitation: simple means dilute comple-
mentary signals and retain conflicting noise. In contrast, SNF’s diffusion-based fusion reinforces
consistent neighborhood structure across metrics while attenuating discordant components, yielding
both stronger global separation and greater local stability.

This superior performance demonstrates that different representational dimensions provide com-
plementary information about model families. While geometry and tuning capture family-specific
computational strategies, and linearly accessible features potentially reflect more universal solutions,
the integration of these diverse facets yields comprehensive signatures that most reliably distinguish
model families.

To test whether SNF recovers the shared structure across metrics rather than replicating any sin-
gle one, we try to quantify the intermetric agreement. Specifically, to ensure comparability across
metrics, we symmetrize every similarity matrix by averaging it with its transpose, remove the diag-
onal (self-similarity), vectorize the remaining upper-triangle entries, and then compute correlation
between vectors. As shown in Figure [D.1] geometry-preserving metrics (RSA, SoftMatch, CKA)
show strong mutual agreement, mapping-based metrics (Procrustes, Linear Predictivity) are moder-
ately aligned, and CCA-variants highly correlate with each other but less agree with other metrics.
SNF aligns only moderately with any single metric and is clearly distinct from simple averaging,
indicating it fuses complementary facets instead of collapsing to one metric.

3.3 A DATA-DRIVEN TYPOLOGY OF VISION MODELS

Having shown that integrated representational signatures provide the most comprehensive charac-
terization of model families, we next use the SNF-fused similarity matrix to derive a data-driven
typology. This typology reveals how models cluster according to their representational processing,
moving beyond surface-level groupings defined by architecture or training paradigm.

As a baseline, we first examine clustering results from individual metrics (Figure [E.3).
We observe distinct patterns across the metrics: measures such as Linear Predictivity and Procrustes,
tend to produce relatively uniform similarity values across a wide range of models, resulting in
diffuse, non-distinct clusters. SoftMatch, which emphasizes the geometric alignment of individual
units, struggles to clearly separate models that are neither CNN-based nor supervised. PWCCA and
SVCCA produce noisy similarity matrices in which, despite dendrogram reordering, no strong or



coherent clustering structure is apparent. RSA reveals some clustering—most notably a separation
between CNNs and Transformers—but the partitions appear quite diffuse. Even simple averaging of
normalized metric values fails to produce sharply defined clusters. Together, these results highlight
the limitations of single metrics: each emphasizes a different facet of representational similarity,
leading to clustering patterns that are fragmented, noisy, or inconsistent across metrics.

AVERAGE SOFTMATCH . LINEAR PREDICTIVITY

Figure 4: Hierarchical clustering of models under 8 similarity metrics (average linkage with optimal
leaf ordering), based on induced distances (1— similarity score). Rows and columns are reordered
according to leaf ordering. Darker colors indicate higher similarity; diagonal entries are excluded.
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Figure 5: SNF-based clustering reveals that models naturally group by architecture and supervision
regime. Supervised CNNs and ViTs each form distinct clusters; hybrid models (ConvNeXt, Swin)
and MAE ViTs cluster together; and unsupervised models (e.g., DINO ViTs, unsupervised CNNs)
form coherent groups. The heatmap shows the SNF-fused similarity matrix reordered by leaf order-
ing. Leaf labels are colored by model family and supervision; dendrogram cuts yield up to six flat
clusters aligned with canonical categories.

In contrast, hierarchical clustering of the fused similarity matrix reveals well-defined groupings that
both confirm expected relationships and uncover surprising organizational principles (Figure[5] [E2}
[E-6)). To quantitatively assess the fidelity of these clusters, we compute the cophenetic corre-
lation coefficient (CCC) measuring how well the clusters preserves the original pairwise similarities
(Figure [FI). Our SNF-based metric achieves one of the highest CCC of 0.982 among all metrics
indicating that the clusters formed by the fusion matrix more faithfully reflect the underlying similar-
ity structure among models. These results provide additional evidence that the SNF produces more
meaningful and robust clusterings compared to individual baseline metrics, providing confidence in
the typology.

Next, we examinine the clusters derived from the fusion matrix (Figure[5). Our typology reveals a
complex interplay between architecture and training paradigm in determining representational struc-



ture. While some clusters align with architectural expectations—supervised ResNets group together,
as do supervised VGGs and supervised ViTs—the most striking finding is that training paradigm can
override architectural boundaries. All self-supervised models, regardless of architecture, form a uni-
fied cluster that transcends the CNN-Transformer divide. Self-supervised ResNets (MoCo, DINO,
SwAYV, Barlow Twins) group more closely with self-supervised ViTs than with their supervised
architectural siblings. This suggests that the computational strategies induced by self-supervised
learning—whether through contrastive learning, self-distillation, or redundancy reduction—create a
shared representational signature that dominates over architectural differences.

Perhaps most surprisingly, hybrid architectures (ConvNeXt and Swin) cluster with MAE models
despite their different design philosophies. ConvNeXts modernize CNNs with Transformer-inspired
components, Swins introduce CNN-like biases into Transformers, and MAE employs masked re-
construction—yet they converge on similar representational structures. This convergence suggests
that architectural modernization and masked reconstruction, though approaching from different an-
gles, arrive at similar computational solutions. These unexpected groupings demonstrate the power
of our data-driven approach: we discover that emergent computational strategies—shaped by the
interplay of architecture, training objective, and task demands—determine representational struc-
ture. The typology thus reveals the true “species” of vision models, defined not just by their surface
characteristics but by how they fundamentally process and organize visual information.

4 DISCUSSION

In this work, we systematically compared multiple representational properties across vision mod-
els—including geometric organization, tuning of individual neurons, and linearly accessible fea-
tures—to identify which aspects are universally shared versus model-family specific. Our analy-
sis reveals that geometry-preserving or tuning-preserving metrics (RSA, Soft Matching) strongly
discriminate between model families, while Linear Predictivity and CCA-variants shows weaker
separation. By applying Similarity Network Fusion from multi-omics analysis, we integrated these
diverse metrics, achieving superior separation of model families compared to any single metric.
Moreover, hierarchical clustering on the SNF-integrated similarity matrix revealed a data-driven
typology of vision models that transcends traditional architectural categories. Just as biological ty-
pologies require multiple markers, understanding model representations benefits from integrating
complementary perspectives rather than relying on single metrics that capture only partial aspects
of representational structure.

Our analysis has several important limitations. First, we focus primarily on natural image databases
(ImageNet, Ecoset, CIFAR) and testing the stability of the discovered typology to more out-of-
distribution domains would test the generalizability of these groupings. Second, we focus largely
on penultimate layer representations. Though we observe reasonable consistency across layers for
most metrics as shown in Figure [G.T} comprehensive multi-layer analysis could reveal how repre-
sentational strategies correspond across network depth. Finally, while SNF provides a principled
integration framework, our typology inherently depends on the choice of input metrics. Future work
should systematically evaluate how metric selection influences the discovered groupings and explore
alternative integration approaches to validate the robustness of our findings.

This typology framework opens several research avenues. Longitudinal analysis could track how
models move through representational space during training, potentially revealing whether all mod-
els traverse similar developmental trajectories. Extending the framework to multi-modal models
could test whether vision-language models form distinct clusters or integrate into existing groupings.
A particularly important direction is comparing our representation-based typology with behavioral
groupings. Do models that cluster together based on internal representations also exhibit similar pat-
terns of errors, biases, or generalization behaviors? If behavioral measures yield different groupings
than our SNF-based approach, this would reveal that representational similarity doesn’t necessar-
ily imply functional similarity. Finally, validating whether models within the same representational
cluster show similar transfer learning performance (e.g., similar fine-tuning convergence rates or fi-
nal accuracies on downstream tasks) could provide practical utility for the typology and guide model
selection strategies. Our framework provides a tool for the community to assess whether new models
offer genuinely novel representational strategies or represent variations on established themes.
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A EXPERIMENT SETTINGS

Datasets. The chosen datasets are balanced across different classes as shown in Tabel [A 1]

Table A.1: Per-class and total sample counts for standard evaluation splits.

Dataset Number of Classes Samples/ Class Total Samples
ImageNet-1k (valid) 1,000 50 50,000
Ecoset (valid) 565 50 28,250
CIFAR-10 (test) 10 1,000 10,000
CIFAR-100 (test) 100 100 10,000

Models. All models are trained on the ImageNet-1K training set. We obtain pretrained weights
from torchvision (maintainers & contributors} 2016)), Torch Hub (Paszke et al.|2019)), timm (Wight-
man), 2019), or the official repositories. Unless noted otherwise, we extract activations from each
model’s penultimate layer. For CNNs, which commonly include global average pooling, we use
that pooled feature. For ViT-style models, we average non-CLS token embeddings to form the final
representation for consistency across architectures.

B MODEL FAMILY AND ARCHITECTURE CHOICES

We evaluate multiple architectures within each family to capture variation in depth, width, parameter
amounts and design choices.

Convolutional Neural Network (supervised; CNN (sup.)). Bottom-up hierarchies with convo-
lutions and pooling that impose strong local inductive biases. We include AlexNet (Krizhevsky
et al.), VGG-11/13/16/19 (with/without batch normalization) (Simonyan & Zisserman)), and ResNet-
18/34/50/101/152 (He et al.).

Transformer (supervised; Trans (sup.)). Vision Transformers partition images into fixed-size
patches and use multi-head self-attention for global interactions (Dosovitskiy et al., 2021). We
include ViT-S/16, ViT-B/16, ViT-L/16, and ViT-B/32.

ConvNeXt (Liu et al., 2022). A convolutional family inspired by Transformer design (e.g.,
large-kernel depthwise convolutions, patchified stems, inverted bottlenecks). We use ConvNeXt-
Tiny/Small/Base/Large.

Swin Transformer (Liu et al., 2021). A hierarchical Transformer with shifted window attention
for efficient locality while retaining global context. We use Swin-Tiny/Small/Base/Large.

Convolutional Neural Network (self-supervised; CNN (unsup.)). Methods trained without la-
bels using CNN backbones (ResNet-50). We include MoCo (Chen* et al. 2021)), DINO (Caron
et al.l 2021), SWAV (Caron et al., [2020), and Barlow Twins (Zbontar et al., 2021), spanning con-
trastive and non-contrastive paradigms (momentum contrast, self-distillation, online clustering, and
redundancy reduction).

Transformer (self-supervised; Trans (unsup.)). Label-free training with Transformer back-
bones. We include DINO-ViT-Small/16 and DINO-ViT-Base/16 (Caron et al., 2021, MoCo-ViT-
Base/16 (Chen* et al.| 2021)), and MAE-ViT-Base/16 and MAE-ViT-Large/16 (He et al.| 2021).
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C SEPARATION PERFORMANCE ON OTHER DATASETS
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Figure C.3: Same as Figure 2] but using CIFAR100 instead of ImageNet.
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D METRICS’ SIMILARITY SCORES CONSISTENCY
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Figure D.1: Each subplot (ImageNet, Ecoset, CIFAR10, CIFAR100) shows pairwise Pearson cor-
relations between the vectorized upper-triangle entries of the symmetrized model-model similarity
matrices produced by nine metrics. Higher values indicate that two metrics have more similar rela-
tional geometry among models.
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E CLUSTERING PERFORMANCE ON OTHER DATASETS
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Figure E.1: Same as Figure[d but using Ecoset instead of ImageNet.
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Figure E.2: Same as Figure 3] but using Ecoset instead of ImageNet.
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Figure E.3: Same as Figure d but using CIFAR10 instead of ImageNet.
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Figure E.4: Compared to ImageNet in Figure [5 the clustering result is a little different but similar,
demonstrating the SNF results and metric’s separability are also influenced by datasets, while also
preserving a certain degree of stability. The supervised models are clustered in the same way, but
the clusters for the unsupervised models changed, demonstrating that the unsupervised way leads to
a special but kind of unifying representational geometry.
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Figure E.5: Same as Figure d] but using CIFAR100 instead of ImageNet.
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Figure E.6: Same as Figure[E-4] but using CIFAR100 instead of CIFAR10.
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F COPHENETIC CORRELATION COEFFICIENTS FOR CLUSTERING

Datasets
[0 ImageNet [] Ecoset [ CIFAR10 71 CIFAR100

~N © N ~
o ~ o o 0
X510 mh _Q wi Qw5
A N N2 R o5 coc Qg < @
104 ss22 23 S8 a J : o @
X Leco 2] 25as (<3PS il 38 ~ © ~ &
= o ° = ‘Dg 5o 3o RN
c ! [ 3 =1 2 228 gwc’-g R >
g o & 58 88-29°5 g B
c 0.8 ) M I -5 S o
< SH ‘\o TN
: & .
(&} 8 BE]
0.64 o ® oo
o < © *'C:rr
i~ o = oS <
g B 1
9] =
< 0.4
S
o
@]
0.2
0.0
) & A & &S & & & og
& @ & C 9 R S C© ©
N K3 2 N o) 3¢ )
%“ v & & & S <
2 N < < 3
2
&
&
>

Figure F.1: Cophenetic correlation coefficients (CCC) for hierarchical clusterings induced by each
metric on four datasets. Higher CCC (closer to 1) means the clustering more faithfully preserves the
original pairwise structure. Bars show CCC on ImageNet, Ecoset, CIFAR10, and CIFAR100 (values
annotated; lines trace dataset-wise trends).
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G METRICS’ CROSS LAYER CONSISTENCY

For each metric and dataset, we also test whether the similarity structure is stable across depth.
We extract features at normalized depths d in (0.6, 0.8, 1.0). For CNNs, if batch normalization
layers exist (e.g. ResNet), we count layers by them; if not (e.g., VGG, AlexNet), we count layers
by ReLU units. For ViTs, one feature extraction unit (first layer normalization + attention block +
second layer normalization) is counted as one layer, and we take the output after the second layer
normalization. We select the layer for a normalized depth d € (0,1] via ¢ = |dL], where L is the
total number of layers. For each metric, one depth corresponds to one matrix. We vectorized the
off-diagonal entries, and computed Pearson correlations between the 3 depth pairs. We found that
SNF and SoftMatch show the highest depth consistency, whereas the CKA and CCA variants are
less stable. Although the representations in different layers could be greatly different, the SNF could
still identify the layer-model belonging relationship and the difference between model families.
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Figure G.1: Cross-layer consistency of inter-model similarity. The bar height is the mean of the
three depth pairs correlations; higher values indicate greater consistency.

H THE USAGE OF LARGE LANGUAGE MODELS (LLMS)

LLMs are mainly used in two ways. For aiding or polishing writing, they are primarily used to
identify typos and make the language more aligned with conventions of academic writing. For
retrieval and discovery, LLMs with internet access are used to search for related work.
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